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INSTRUCTIONS TO CANDIDATES

                 • Write your name clear ly in capital letters, your Centre Number and Can didate Number in the spaces provided
   on the Answer Booklet.

            • Use black ink. Pencil may be used for graphs and diagrams only.

                   • Read each question carefully and make sure th at you k now what you have to do before star ting your answer.
   • Answer the questions.all 
      • Do write in the bar codes.not 
                • Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is

       specified in the question or is clear ly appropr iate.
           • You are p ermitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

                 • The number of mark s is given in brackets at the e nd of each question or par t q uestion.[ ] 
 • You are reminded of the need for clear presentation in your answers.

          • The total number of mark s for this paper i s .72
          • This d ocument consists of pages. Any blank pages are indicated.4 
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 1 Express
2 + 3i

5 − i
  in the form x + iy         , showing clearly how you obtain your answer. [4]

      2 A The matrix is given by A  =   2 0

a 5
  . Find

 (i) A− 1  , [2]

 (ii) A2  −   1 2

 0 4
  . [2]

 3 Find
n

∑
r =1

( 4 r3 + 6r2 + 2r)          , expressing your answer in a fully factorised form. [6]

     4 Given that and are 2A B ×       2 non-singular matrices and is the 2I ×    2 identity matrix, simplify

B(AB)− 1
A − I. [4]

              5 By using the determinant of an appropriate matrix, or otherwise, find the value of k   for which the

 simultaneous equations

2x − y   + ß = 7,

3y   + ß = 4,

x + ky + k  ß = 5,

      do not have a unique solution for x, y and ß  . [5]

         6 (i) The t ransformation P is represented by the matrix   1 0

0 −1
      . Give a geometrical description of

  transformation P. [2]

        (ii) The tr ansformation Q is represented by the matrix  0 −1

−  1 0
      . Give a geometrical description of

  transformation Q. [2]

              (iii) The transformation R is equivalent to tr ansformation P followed by transformation Q . Find the

    matrix that represents R. [2]

              (iv) Give a geometrical description of the transformation tha t is represented b y your a nswer tosingle 

  part .(iii) [3]

    7 It is given that u
n

= 13
n + 6

n− 1  , where n    is a positive integer.

  (i) Show that u
n

+ u
n+ 1

= 14 × 13
n + 7 × 6

n−1  . [3]

    (ii) Prove by induction that u
n

     is a multiple of 7. [4]
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   8 (i) Show that ( α − β )2  ≡ (α + β )2 − 4 αβ  . [2]

  The quadratic equation x2 − 6 kx + k2 =  0, where k      is a positive constant, has roots α and β  , with α > β .

  (ii) Show that α − β = 4
√

2k  . [4]

       (iii) Hence find a quadratic equation with roots α +  1 an d β −  1. [4]

   9 (i) Show that
1

2r − 3
−

1

2r + 1
=

4

4r2 − 4r − 3
 . [2]

       (ii) Hence find an expression, in terms of n  , for

n

∑
r= 2

4

4r 2 − 4 r − 3
. [6]

  (iii) Show that

∞

∑
r= 2

4

4r 2 − 4 r − 3
=

4

3
 . [1]

               10 (i) Use an algebraic method to find the square roots of the complex number 2 + i
√

  5. Give your

   answers in the form x + i y  , w here x and y     are exact real numbers. [6]

     (ii) Hence find, in the form x + iy where x and y         are exact real numbers, the roots of the equation

ß4 − 4ß 2 + 9 = 0. [4]

              (iii) Show, on an Arga n d diagram, the roots of the equation in part .(ii) [1]

  (iv) Given that α            is the root of the e q uation in part such that 0(ii) < arg α < 1

2
π     , sketch on the sa me

     Argand diagram the locus given by  | ß − α   | = | ß |  . [3]
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